

## General Overview of English-Taught Courses at the University of Bayreuth

### Available during Summer Semester 2024

An overview for Winter Semester 2024/25 is expected to be available as of 01.10.2024



# Mathematics, Physics and Computer Science

| Number | Course Title                                                                         | Duration | Туре            | ECTS /<br>Credits | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|--------|--------------------------------------------------------------------------------------|----------|-----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00576  | Current Topics in Complex<br>Systems                                                 | 2        | Sem             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 10110  | Introduction to the<br>iterative methods of<br>numerics                              | 5        | Lec<br>&<br>Tut | 8                 | Only a fraction of the mathematical problems that arise in practice can be solved analytically, the majority cannot be solved with paper and pencil. For example, not even the pendulum motion of a thin rod can be specified in a closed form. Another example results from Abel-Ruffini's theorem. According to this theorem, there is no closed-form formula for eigenvalue problems of dimension 5 or greater. In order to solve such simple problems, iterative numerical methods are essential. For more complex problems, the computer is used as an aid to implement the corresponding numerical methods. Topics covered: - Iterative methods for solving large-dimensional linear systems of equations (classical iteration methods, CG, GMRES methods, preconditioners) - Numerical methods for eigenvalue problems (QR, Lanczos methods, etc.), singular value decomposition and other topics such as - Nonlinear equations and optimisation - Approximation theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 10214  | Modelling, simulation<br>and optimisation with<br>ordinary differential<br>equations | 6        | Lec<br>&<br>Tut | 10                | Mathematical modelling of application problems with ordinary differential equations (e.g. population dynamics, epidemiology, mechanics,) Numerical methods for initial value problems of ordinary differential equations (convergence theory, one-step method, step size control, stiff differential equations) Optimisation with ordinary differential equations (formulation, discretisation, reformulation as a non-linear optimisation problem) It is planned that modelling will be dealt with on one day of the week and simulation on the other. Optimisation will be covered in both parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 10234  | Mathematical Model-<br>ling for Climate and<br>Environment                           | 6        | Lec<br>&<br>Tut | 5/10              | The course is planned to be conducted in two parts: Part 1 in Bayreuth during regular lecture times in the Summer Semester; this part will include guest lectures by experts in various areas of climate science Part 2 will consist of either an excursion (ca. one week) to the Alfred-Wegener-Institute for Polar and Marine Research in Bremerhaven (after the end of the regular lecture period) or a series of guest lectures on additional topics connected to the course Course topics: Physical principles, mathematical models, and numerical methods in climate and environmental sciences Earth system: Main components, driving forces, scales, feedbacks Hierarchy of climate models, regional and global focus Environmental modelling: Main applications and problem settings Description: The course introduces the main physical concepts and mathematical descriptions underlying modern climate and environmental models including formulating and interpreting the systems of ordinary and partial differential equations for the main components of the Earth system (ocean, atmosphere, land cover, subsurface, ice sheet, etc.) and interactions between them. Additionally, the course covers some basics of analytical and numerical solution methods for different types of climate and environmental problems and offers theoretical and programming assignments aiming to give the first hands-on experience with the introduced techniques. |  |
| 10235  | Fast Methods for Differen-<br>tial and Integral Equations                            | 6        | Lec<br>&<br>Tut | 10                | Numerical analysis of optimal complexity solvers for the treatment of boundary value problems; effi-<br>cient treatment of parameter-dependent problems: - subspace correction methods - hierarchical bases<br>and BPX preconditioners - geometric and algebraic multigrid methods (convergence and implementa-<br>tion aspects) - reduced bases methods - analysis of hierarchical matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 10302  | Mathematical Data<br>Science                                                         | 3        | Lec<br>&<br>Tut | 5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 10309  | Methods of artificial intel-<br>ligence in control theory                            | 3        | Lec<br>&<br>Tut | 5                 | The lecture provides an introduction to the method of reinforcement learning. On the one hand, this includes the mathematical foundations of the method and the description of algorithm variants. On the other hand, the method of deep reinforcement learning is discussed in particular and it is analysed when deep neural networks represent an advantageous approximation architecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 10602  | Modelling Sem A<br>Presentation                                                      | 2        | Adv.<br>Sem     | 8                 | Students receive real-world projects and work (in small groups) their way into them. The Sem is divided into two parts: Presentation and Written Report. Presentation part: Each group prepares a presentation for its subject (duration: 30 - 60 minutes) and talks about it in front of the plenum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 10603  | Modelling Sem A Report                                                               | 2        | Adv.<br>Sem     | 8                 | Students receive real-world projects and work (in small groups) their way into them. The Sem is divided into two parts: Presentation and Written Report. Report: Each group prepares and distributes a report (at least 10 pages) using a scientific text system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 10604  | Modelling Sem B<br>Presentation                                                      | 2        | Adv.<br>Sem     | 8                 | Students receive real-world projects and work (in small groups) their way into them. The Sem is divided into two parts: Presentation and Written Report. Presentation part: Each group prepares a presentation for its subject (duration: 30 - 60 minutes) and talks about it in front of the plenum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 10605  | Modelling Sem B Report                                                               | 2        | Adv.<br>Sem     | 8                 | Students receive real-world projects and work (in small groups) their way into them. The Sem is divided into two parts: Presentation and Written Report. Report: Each group prepares and distributes a report (at least 10 pages) using a scientific text system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 10609  | Scientific Computing                                                                 | 3        | Adv.<br>Sem     |                   | Sem accompanying the ESG Scientific Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

| Number | Course Title                                                 | Duration | Туре            | ECTS /<br>Credits  | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|--------|--------------------------------------------------------------|----------|-----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10610  | Preliminary course<br>Scientific Computing                   | 2        | Lec<br>&<br>Tut |                    | <ul> <li>Analytical concepts: normalised spaces, convergence, closed and compact sets, Banach and Hilbert<br/>spaces, Lp-spaces - Numerical methods: Interpolation, quadrature rules, LU and QR decomposition,<br/>conjugate gradient methods - Programming in C/C++: Implementation of CG with std::vector and<br/>BLAS; compiling, debugging and linking from the Linux command line and via cmake/make</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 10611  | Modelling with<br>differential equations                     | 3        | Lec<br>&<br>Tut | 4                  | For students of the Elite Graduate Program Scientific Computing, this course consists of the lecture<br>"Modelling, Simulation and Optimisation with Ordinary Differential Equations". Further information can<br>be found at https://my.uni-bayreuth.de/cmlife/s/courses/Ly91YnRAY21jby9hcGkvY291cnNlcy8zMzk5MjA/overview<br>or https://elearning.uni-bayreuth.de/course/view.php?id=40730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 10809  | Mathematical<br>specialisations for<br>economics             | 4        | Lec<br>&<br>Tut | 6                  | Mathematical methods from linear algebra, analysis and optimisation for economic and business management issues are deepened.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 12003  | Information Visualisation                                    | 2        | Lec             | 5                  | Specific visualization types and data types (e.g. multi-dimensional, graphs, hierarchies and trees, time series, text-related, etc.) Interaction with information visualizations Presentation, integration and evaluation of information visualizations Practical implementation of information visualisations (e.g. with Python, web-based and other frameworks) Introduction to Information Visualization (e.g. motivation, examples, core concepts) Specific visualization types and data types (e.g. multi-dimensional, graphs, hierarchies and trees, time series, text-related, etc.) Interaction with information visualizations Presentation, integration and evaluation of information visualizations (e.g. motivation, examples, core concepts) Specific visualization types and data types (e.g. multi-dimensional, graphs, hierarchies and trees, time series, text-related, etc.) Interaction with information visualizations Presentation, integration and evaluation of information visualizations Practical implementation of information visualizations (e.g. Python, web-based and other frameworks) |  |
| 12013  | Intelligent User Interfaces                                  | 2        | Lec             | 5                  | Introduction to Intelligent User Interfaces (e.g. motivation, examples, core concepts) - HCI + AI recap/<br>preparations (e.g. basic concepts; practical prototyping with Python (backend, AI, algorithms) and<br>JS/HTML/CSS (user interface, interaction)) - Recommender systems (e.g. movie recommendations) -<br>Conversational user interfaces (e.g. chatbots, voice assistants) - Interaction with text (e.g. personalised<br>keyboards, text suggestions, language modelling) - User/input modelling and adaptive UIs (e.g. touch,<br>pointing, typing, menus) - Computational UI design and evaluation (e.g. layout optimisation) -N1007<br>Broader perspective (e.g. explainable AI, ethics)_x000D_                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 12015  | Intelligent User Interfaces                                  | 2        | Tut             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 12016  | Information Visualisation                                    | 2        | Tut             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 12108  | Event Processing<br>(INF 222)                                | 3        | Lec             | 5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 12119  | Programming,<br>Data Analysis and<br>Deep Learning in Python | 2        | Lec             | 5                  | The Python programming language, data types, control structures, functions, object-orientated<br>programming, debugging. Algorithms: Recursion, dynamic programming, Newton's method. Arith-<br>metic with matrices: Linear algebra with NumPy, matrix factorisations, eigenvectors and eigenvalues,<br>diagonalisation, SVD, least squares method, pseudo inverse. Data analysis: pandas, clustering, plotting.<br>Neural networks and deep learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 12200  | Data Analysis II                                             | 2        | Lec             | 8                  | Data visualisation, machine learning, ontologies, NoSQL, distributed computing concepts (MapReduce, Hadoop, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 12220  | Foundations of<br>Semi-structured Data                       | 2        | Lec             | 5                  | Data on the web is present in many different forms. The most widespread formats are tabular (csv), tree-structured (XML, JSON), and graph-structured (RDF, knowledge graphs, property graphs). Tabular data is "similar in spirit" to relational databases, which is treated in depth in DBIS 1. This lecture focuses on foundational aspects of the other data models, namely tree- and graph structured data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 14054  | Advanced Physical<br>Computing<br>(PBWP6)                    | 2        | Lec             | 3 /5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 14055  | Advanced Physical<br>Computing<br>(PBWP6)                    | 2        | Tut             | 5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 14056  | Advanced Physical<br>Computing<br>(PBWP6)                    | 0.5      | Crs             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 14057  | Soft matter spectroscopy<br>OS1+OS2                          | 4        | Lec             | 6 /9<br>/12<br>/15 | The aim of this course is to give you an overview of the basics and applications of modern optical spectroscopy methods, in particular spectroscopy of soft matter, i.e. molecules and polymers. We will discuss 13 exemplary experiments. First, I will present the basics in the script and in overview videos. Then you will apply this to 'real' measurements, analyse them and interpret the results. In the live sessions, we will clarify open questions and discuss your solutions to the tasks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 14077  | Crystallography in solid state physics                       | 4        | Lec<br>&<br>Tut | 6 /9<br>/12<br>/15 | Part 1: see Synchrotron and the X-ray free electron laser (15064) Part 2: Structure factor and electron density The phase problem and methods for structure solution Refinement methods Part 1 can be chosen as a course on synchrotron radiation; Part 2 for the entire module.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

| Number | Course Title                                                                                                                                    | Duration | Туре            | ECTS /<br>Credits  | Module Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 14087  | Methods of molecular<br>simulation                                                                                                              | 4        | Lec<br>&<br>Tut | 15                 | In this course the wide range of modern simulation methods for the investigation of potential energy surfaces of different systems will be presented. These techniques allow e.g. the treatment of finite temperatures or other ensemble effects, or provide explicit dynamical information over micro- to macroscopic time scales. Methods for the search of minima and transition states, molecular dynamics, (kinetic) Monte Carlo, as well as techniques for the calculation of free energies will be discussed. The focus of the lecture is on the discussion of basic concepts, applications and limitations of the methods with the aim of providing an overview of the field rather than detailed technical knowledge. |  |
| 14250  | Advanced Concepts and<br>Current Topics in Biological<br>Physics<br>(B1: Modelling and design<br>of protein structures)                         | 1        | Lec<br>&<br>Tut | 10                 | Lecturers from the elite study programme "Biological Physics". Time and place by arrangement with the students.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14252  | Advanced Concepts and<br>Current Topics in Biological<br>Physics<br>(B3: Techniques in<br>Molecular Biology: Recent<br>Revolutions in Research) | 1        | Lec<br>&<br>Tut | 10                 | Lecturers from the elite study programme "Biological Physics". Time and place by arrangement with the students.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14253  | Advanced Concepts and<br>Current Topics in Biological<br>Physics<br>(B4:Visualisation of cell<br>organelles: dynamics and<br>ultrastructure)    | 1        | Lec<br>&<br>Tut | 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14260  | Advanced Concepts and<br>Current Topics<br>in Biological Physics<br>(P1: Biofluid simulations)                                                  | 1        | Lec<br>&<br>Tut | 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14262  | Advanced Concepts and<br>Current Topics in Biological<br>Physics<br>(P3: Single-molecule<br>techniques in Biophysics)                           | 1        | Lec<br>&<br>Tut | 10                 | Lecturers from the elite study programme "Biological Physics". Time and place by arrangement with the students.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14264  | Advanced Concepts and<br>Current Topics in Biological<br>Physics<br>(P5: Calculating ex-<br>citations in molecular<br>systems)                  | 1        | Lec<br>&<br>Tut | 10                 | Topic as part of the course Advanced Concepts and Current Topics in the elite study programme<br>"Biological Physics". Block course after prior registration. Time and place to be announced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 14265  | Advanced Concepts and<br>Current Topics in Biological<br>Physics<br>(P6: Quantifying transport<br>and binding events in<br>living organisms)    | 1        | Lec<br>&<br>Tut | 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14270  | Interdisciplinary Practical<br>Exercise Course Biological<br>Physics                                                                            | 6        | Crs             | 12                 | Internship as part of the elite study programme "Biological Physics". Time and place by arrangement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 14361  | Physics colloquium                                                                                                                              | 2        | Coll            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 15020  | Material physics                                                                                                                                | 4        | Lec             | 6 /9               | The course gives an insight into the relationship between physical properties of solids and their struc-<br>ture and symmetry. Tensor properties of crystals of ranks zero through four will be considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 15032  | Review of Current<br>Scientific Literature                                                                                                      | 2        | Lec             | 6 /9<br>/12<br>/15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 15064  | Synchrotron radiation and the X-ray free-electron laser                                                                                         | 2        | Lec             | 6 /9<br>/12<br>/15 | Construction and operation of a synchrotron; the free electron laser (FEL); properties of synchrotron radiation and radiation from an X-ray laser; applications in biological physics and solid-state physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 15140  | Modern crystallographic methods                                                                                                                 | 2        | Sem             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

#### Key/Abbreviations:

| Adv.Se | m             | Lab | Lab course |                                                              |
|--------|---------------|-----|------------|--------------------------------------------------------------|
| Advand | ed seminar    | Lec | Lecture    |                                                              |
| Crs    | Course        | Pro | Project    | Please check availability of your chosen subject/course by   |
| Coll   | Colloquium    | Sem | Seminar    | contacting the respective faculty.                           |
| ECTS   | Credit Points | Tut | Tutorial   | You can find contact details at www.uni-bayreuth.de/en/study |



INTERNATIONAL OFFICE



#### Contact

University of Bayreuth International Office Universitätsstraße 30 | ZUV 95447 Bayreuth

www.international-office.uni-bayreuth.de